ASYMMETRIC SYNTHESIS VI.
STEREOCHEAISTRY OF THE REDUCTION OF 2-SUESTITUTED CYCLOPENTANONES
L. Gruber, I. Tömösközi and L. Otvös

Central Research Institute for Chemistry
of the Hungarian Academy of Sciences, Eudapest, Hungary (Received in UK 19 January 1973; accepted for publication 1 February 1973)

The stereochemistry of the reduction of cyclic ketones has been investigated by many authors and generalizations concerning the steric course of the reactions have also been suggested.

It is a common feature of the interpretations published so far ${ }^{1}$ that they require detailed information about the geometry of the transition state. Since appropriate data for this are not available, we belive that this kind of treatment fails to lead to reliable results. For this reason, regardless of the transition state, we consider the trivial relationship between the ratio of specific rate of formation of the $c i s$ and trans isoners (k_{c} and k_{t}, resp.) and some kind of characteristic parameters ($\bar{\lambda}_{R}$) of the substituent R changed systematically:

$$
\begin{equation*}
\log \frac{k_{c}}{k_{t}}=\sum_{n=0}^{m} a_{n} \lambda_{R}^{n} \tag{1}
\end{equation*}
$$

A set of coefficients, $a_{0}, a_{1}, \ldots, a_{m}$, can always be selected so as to fit simultaneously any expected values provided that m is at least as large as the number of the different substituents considered. Since the scale of λ_{R} values can be fixed arbitrarily, we specify them as quantities identical with the "ligand constants" introduced by Ugi and Ruch ${ }^{2}$. The utility of $k q$. (1) depends on its reducibility to simpler form in which the number of coerficients to be estimated is essentially less than that of the substituents.

The results obtained from LaH reduction of 2-H-cyclopentanones in ether at 35° (Table) indicate that $E q$, (1) can be reduced to a quadratic form ($a_{0}=0$ follows from the definition ${ }^{2} \lambda_{H}=0$):

$$
\begin{equation*}
\log \frac{k_{c}}{k_{t}}=-a_{1} \lambda_{R}+a_{2} \lambda_{R}^{2} \tag{2}
\end{equation*}
$$

Although this quadratic form may also hold for the case of cyclohexanone derivatives, a fivemembered model seems to be more adequate for a first test because only a much smallex conformational change has to be considered in the reactant state; the equatorial-axial transition in the cyclohexanone series involves a twist by 120° in contrast to that of about 23° in the cyclopentanone series ${ }^{3}$. Neglecting this oscillation of relatively small amplitude, we treated the five-membered skeleton as an approximately planar one.

TABLE: Reduction of 2-R-cyclopentanones with LAH

$$
\lambda_{S}=1.34 ; \quad \tau=1.1 ; \quad a_{1}=1.95 ; \quad a_{2}=1.46
$$

R	λ_{R}	cis iso Around	percent calca.	lit.
CH_{3}	1.00	24	24	$25^{16,4,5}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	1,05	27	26	
$\mathrm{n}_{-\mathrm{C}_{3} \mathrm{H}_{7}}$	1.08	26	28	
$\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9}$	1.21	39	37	38^{4}
$\mathrm{C}_{6} \mathrm{H}_{5}$	1.23	40	39	41^{6}
iso-C3 ${ }^{\text {H7 }}$	1.27	47	43	577
${ }^{+} t-\mathrm{C}_{4} \mathrm{H}_{9}^{\prime}$	= 1.40	54	57	

$\wedge_{\text {Experimental data were obtained by vpc. }}$
For preparation and configuration see: G.Bernath,L.Gruber and I.Tömösközi, Acta Szegediensis in press.
This value was selected in agreement with Prof. UGi instead of 1.47 ${ }^{2}$.
The consistency of the treatment outlined above is reflected by the fact that Eq. (2) is identical with the Ugi-Kuch equation. If we consider formally the skeletal moiety, starting from $C-3$, as a substituent (λ_{S}) attached to the chiral centre $\mathrm{C}-2$, the Ugi-Ruch equation gives

$$
\begin{equation*}
\log \frac{k_{c}}{k_{t}}=\tau\left(\lambda_{R}-\lambda_{H}\right)\left(\lambda_{H}-\lambda_{S}\right)\left(\lambda_{S}-\lambda_{R}\right) \tag{3}
\end{equation*}
$$

which is identical with Eq. (2) if $a_{1}=\tau \lambda_{S}^{2}$ and $a_{2}=\tau \lambda_{S}$.

REFERENCES

1.a E.L.Eliel and Y.Senda, Tetrahedron, 26, 2411 (1970); W.Cherest, H.Felkin and N.Prudent, Tetrahedron Letters, 2199 (1968); M. Cherest and H.Felkin, ibid., 2205 (1968); J.D.Morrison and H.S.Mosher, Asymaetric Organic Reactions, Prentice Hall, Inc., Englewood Cliffs, New Yersey 1971, p.116.
b W.G.Dauben, G.J.Fonken and D.S.Noyce, J.Am.Chem.Soc., 78, 2579 (1956); H.C.Brown and H.R.Deck, ibid., 37, 5620 (1965); J.C.Richer, J.Org.Chem., 30, 324 (1965).
2. E.R.ach and I.Ugi, in Topics in Stereochemistry, Vol.4, N.L.Allinger and E.L.Eliel, Eds., Wiley-Interscience, New York, 1969.
3. N.L.Allinger, M.T.Tribble and M.A.Miller, Tetrahedron, 28, 1173 (1972).
4. W.Hückel, M.Maier, E.Jordan and W.Seeger, Liebigs Ann.Chem., 616,46 (1958).
5. J.B.Umland and M.I.Jefraim, J.Am.Chem.Soc., 28, 2788 (1956).
6. C.H.DePuy, G.F.Morris, J.S.Smith and R.J.Smat, ibid., 82, 2421 (1965).
7. W.Hückel and G.Naher, Chem.Ber., 21, 792 (1958).

